
Glyantrypine, a Novel Anthranilic Acid-containing Metabolite of Aspergillus clavatus

Julia Penn,^a Peter G. Mantle,^{*,a} John N. Bilton^b and Richard N. Sheppard^b

 ^a Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK
 ^b Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK

The structure of a novel indole alkaloid, glyantrypine **2**, a main secondary metabolite of *Aspergillus clavatus* has been elucidated by biosynthetic evidence, mass spectrometry and ¹H and ¹³C NMR techniques. The compound extends the variety of metabolites biosynthesised from anthranilic acid and tryptophan without forming a benzodiazepine.

Benzodiazepine fungal metabolites are formed by the condensation of anthranilic acid and an α -amino acid. Therefore benzodiazepines, such as auranthine 1 produced by *Penicillium*

aurantiogriseum, may be detected using a $[carboxyl^{-14}C]$ anthranilic acid probe.¹ Further screening of fungi for similar compounds has revealed a prominent anthranilic acid-containing metabolite which is designated glyantrypine 2 on account of its biosynthetic precursors. However, 2 is not a benzodiazepine. Glyantrypine is produced by a Yugoslavian isolate of Aspergillus clavatus, isolates of which species otherwise produce the non-benzodiazepine metabolites tryptoquivaline 3 and tryptoquivalone 4 which also contain anthranilic acid and tryptophan residues.

Biosynthetic experiments, reported in detail elsewhere,² showed significant incorporation of radiolabel into 2 from $[carboxyl^{-14}C]$ anthranilic acid (0.05%), $[methylene^{-14}C]$ -tryptophan (0.07%) and $[1^{-14}C]$ glycine (0.14%). The presence of an indole in 2 was evident from the electron impact mass spectrum showing a prominent fragment ion at m/z 130. An ion at m/z 174 was interpreted as containing anthranilic acid and glycine moieties. Other fragments at m/z 215, 186 and 160 were consistent with the deduction that 2 was composed of anthranilic acid, tryptophan and glycine residues, condensed with the overall loss of three water molecules but without the formation of a seven-membered benzodiazepine ring.

The ¹H NMR spectrum of **2** in $[^{2}H_{6}]$ dimethyl sulfoxide([²H₆]DMSO) revealed nine aromatic protons, a broad NH doublet coupled to one proton of a methylene system, (δ 3.79, dd), and another three spin system (δ 5.27, t; δ 3.32, dd; δ 3.42, q) which is essentially the same as that given by the α and β protons of tryptophan. There was an indolic NH signal at δ 10.93. The proton-proton correlation spectrum confirmed the presence of the CH-CH₂ and NH-CH₂ three spin systems. These observations are consistent with the structure 2, which was initially suggested by the mass spectrometry and biosynthesis experiments, but do not by themselves lead to a complete elucidation of the structure. Connectivity between aromatic protons was established by use of the two-dimensional COSY spectrum and by analogy with resonances for a novel benzodiazepine 5 (biosynthesised by a particular isolate of P. aurantiogriseum from Yugoslavia and composed of anthranilic acid, leucine and glutamine residues),³ tryptophan⁴ and other model compounds,⁴ which assisted assignment of protons. Molecular modelling studies employing MOPAC (version 5.2) with the PM3 Hamiltonian afforded an optimised geometry where dihedral angles of 15 and 104° between the protons at C-11 and the adjacent NH proton of the amide were observed; this is consistent with the observed couplings.

7

HO

Me

0/

5

¹³C NMR spectroscopy of 2 in [²H₆]DMSO (Table 1) used

Table 1 ¹H and ¹³C NMR data for glyantrypine 2 in $[^{2}H_{6}]$ DMSO

Position	$\delta_{ m H}$	$\delta_{\rm C}$	Jª/Hz
2		147.00	
2 3 4 5 6 7	7.56 dd	126.31	3,4 7.5; 3,5 1.7
4	7.83 dt	137.46	4,3 7.5; 4,5 8.0; 4,6 2.0
5	7.55 dt	126.62	5,6 8.5; 5,4 8.0; 5,3 1.7
6	8.21 dd	126.76	6,5 8.5; 6,4 2.0
7	_	119.88	
8	_	167.63	_
10	_	149.31	_
11′	(3.04 d	43.79	(11.11′ 17.0
11	3.79 dd)		11′,11 17.0; 11′,12 4.5)
12	8.32 d	_	12,11′ 4.5
13	_	159.96	
14	5.27 t	56.47	14,15 5.4; 14,15′ 4.5
15	(3.32 dd	26.52	(15,15' 9.3; 15,14 5.4
15′	3.42 q)		15',15 9.3; 15',14 4.5)
16	_ *	124.41	_ , , , ,
17	6.86 d	107.78	17,18 2.4
18	10.93 br s	_	(br)
19	_	136.02	<u> </u>
20	_	127.16	_
21	7.31 dd	118.63	21,22 7.8; 21,23 1.3
22	7.00	121.22	22,21 7.8; 22,23 7.2; 22,24 1.0
23	6.77 dt	117.75	23,24 7.8; 23,22 7.2; 23,21 1.3
24	7.26 dd	111.43	24,23 7.8; 24,22 1.0

^a Measured from a resolution enhanced spectrum.

DEPT experiments to enable assignment of the proton multiplicities. The spectra revealed eight quaternary carbons, eleven CH groups and two CH₂ groups. Comparison of this data with the resonances obtained in $[{}^{2}H_{6}]DMSO$ for 1,⁵ 5,³ tryptophan and other model compounds,⁴ asperlicin 6⁶ and a tryptophan-phenylalanine diketopiperazine 7³ (described as fructigenine A⁷) identified structural fragments which supported the structure 2 and led to the assignments reported in Table 1.

Model compounds such as 1 were particularly useful in assigning the carbonyl resonances at C-8 and C-13 and the imine resonance at C-10 within six-membered rings. Also notable was the similarity of the aromatic resonances assigned to the indole moiety in 2 with those of tryptophan, rather that with those of the more constrained indole system in 6.6

Experimental

Fermentation Production of Glyantrypine.—500 cm³ Erlenmeyer flasks containing 100 cm³ medium were incubated at 27 °C on a rotary shaker. Seed stage cultures in Czapek Doxyeast extract (0.5%) broth (CDYE medium) were inoculated with spores of a Yugoslavian isolate of *A. clavatus*⁸ (IMI 349510) and grown for 24 h. A 5% v/v transfer of seed stage culture to CDYE medium supplemented with CaCl₂ (2%) initiated the production stage. Chloroform extracts of broth analysed by silica gel TLC in chloroform-acetone (1:1) showed that, typically, 2 was first evident on day 3 and reached maximum yield by day 10 (2.1 mg, 100 cm⁻³ medium). The filtrate from a 40 flask batch was extracted twice with two half volumes of chloroform. Combined extracts were evaporated to dryness and the residue, dissolved in chloroform-acetone (1:1), processed by flash chromatography⁹ through silica gel 60 (Merck; 230-400 mesh) in a column (5 \times 30 cm). Elution with chloroform-acetone (1:1) gave 50 cm³ fractions in which 2 was mainly in fractions 5-8. Further purification of 2 was performed by HPLC through a Spherisorb ODS 1 reversed phase column $(0.5 \times 25 \text{ cm})$ with methanol-water (55:45) at 0.5 cm³ min⁻¹ and detection at 219 nm (retention time 25 min), yield 10 mg. Analytical HPLC used methanol-water (77:23) at 1 cm³ min⁻¹ (retention time 5.3 min).

Glyantrypine was isolated as a white amorphous solid with $\lambda_{max}(in methanol)$ 224 and 270 nm (Found M⁺, 344.1279. C₂₀H₁₆N₂O₄ requires *M*, 344.1273. Major fragment ions at *m/z* 215, 186, 174, 160 and 130).

NMR measurements were made under standard conditions at 500 MHz (¹H) or 125.8 Hz (¹³C) on a Bruker AM-500. Mass spectrometry used a VG-7070 mass spectrometer.

Acknowledgements

We thank the SERC for a postgraduate studentship (J. P.).

References

- 1 S. E. Yeulet and P. G. Mantle, FEMS Microbiol. Lett., 1987, 41, 207.
- 2 J. Penn, M. Purcell and P. G. Mantle, *FEMS Microbiol. Lett.*, 1992, in the press.
- 3 J. M. Boyes-Korkis, Ph.D. thesis, University of London, 1990.
- 4 E. Pretsch, J. Seibl, W. Simon and T. Clerc, *Tables of spectral data for structure determination of organic compounds*, in *Chemical Laboratory Practice*, ed. W. Friserivs, J. F. K. Huber, E. Purgol, G. A. Rechnitz, W. Simon and S. Wist, Springer-Verlag, Berlin, 2nd edn., 1989.
- 5 S. E. Yeulet, P. G. Mantle, H. S. Rzepa, J. N. Bilton and R. N. Sheppard, J. Chem. Soc., Perkin Trans. 1, 1986, 1891.
- 6 J. M. Liesch, O. D. Hensens, J. P. Springer, R. S. L. Chang and V. J. Lotti, J. Antibiot., 1985, 38, 1638.
- 7 K. Arai, K. Kimura, T. Mushiroda and Y. Yamamoto, Chem. Pharm. Bull., 1989, 37, 2937.
- 8 K. M. Macgeorge and P. G. Mantle, Mycopathologia, 1990, 112, 139.
- 9 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.

Paper 2/00575A Received 3rd February 1992 Accepted 23rd March 1992